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Abstract

In this paper we describe a backtrack search over parallel classes
with a partial isomorph rejection to classify resolvable 2-(12, 6, 5c)
designs. We use the intersection pattern between the parallel classes
and the fact that any resolvable 2-(12, 6, 5c) design is also a resolv-
able 3-(12, 6, 2c) design to effectively guide the search. The method
was able to enumerate all nonsimple resolutions and a subfamily of
simple resolutions of a 2-(12, 6, 15) design. The method is also used
to confirm the computer classification of the resolvable 2-(12, 6, 5c)
designs for c ∈ {1, 2}. A consistency checking based on the principle
of double counting is used to verify the computation results.
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1 Introduction

A design is a pair (V,D) where V is a v-set of points and D is a collection
of subsets of V called blocks. A t-(v, k, λ) design is a design (V,D) such
that each block is of size k and each t-subset of V is contained in exactly
λ blocks. It is easy to see that each point occurs in the same number r of
blocks. Similarly, if b denotes the number of blocks, we have that

vr = bk, r

(
k − 1

t− 1

)
= λ

(
v − 1

t− 1

)
. (1)
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A design with t = 2 is called a balanced incomplete block design (BIBD).
For such designs, the second equation of (1) reduces to r(k−1) = λ(v−1).
A design is called simple if it contains no repeated blocks.

Two designs are isomorphic if there exists a bijection between the point
sets that maps blocks onto blocks; such a bijection is called an isomor-
phism. An automorphism of a design is an isomorphism of the design onto
itself. The (full) automorphism group of a design consists of all of its au-
tomorphisms with function composition as the group operation.

A parallel class in a design is a set of blocks that partition the point set.
A resolution of a design is a partition of the blocks into parallel classes.
A design is called resolvable if it has a resolution. Two resolutions are
isomorphic if there exists an isomorphism between the designs mapping
each parallel class of the first resolution into a parallel class of the second.
When v = 2k a resolvable design has a unique resolution.

Classification of designs constitutes a significant field in design theory.
In particular, there are many papers dealing with the existence or classi-
fication of resolvable designs with given parameters, see for example [3],
[4], [6], [9] and [10]. A comprehensive and detailed study of approaches for
constructing and classifying designs is contained in [6]. Although classifi-
cation algorithms for designs have been improved along the years together
with increasing speed of computers there exist several open problems in
this area. In particular, the number of pairwise nonisomorphic resolvable
2-(12, 6, 15)-BIBDs remains unknown. In [14], 225, 970 nonisomorphic re-
solvable 2-(12, 6, 15)-BIBDs were constructed.

In this paper we describe a backtrack algorithm over parallel classes
with a partial isomorph rejection to classify resolvable 2-(12, 6, 5c) designs.
Our algorithm was able to classify, up to isomorphism, all nonsimple reso-
lutions as well as a subfamily of simple resolutions of a 2-(12, 6, 15) design.
The algorithm was, however, unable to enumerate the remaining resolvable
designs because there are too many such designs to find, given existing
computational resources. Also, our algorithm was able to classify the re-
solvable 2-(12, 6, 5c) designs for c = 1 and c = 2. A total of one, and
545 nonisomorphic designs were found for c = 1 and c = 2, respectively.
Our results agree with the results reported in [6], for c = 2. Thus, this
paper provides an independent verification of the computer classification
for the resolvable 2-(12, 6, 10) designs. Furthermore, our program confirms
the results obtained in [14] for orthogonal resolutions of a 2-(12, 6, 15) de-
sign. Finally, a consistency checking based on the basic principle of double
counting is also used to verify our results.

Our enumeration process has two main stages. In the first we generate
a set of collections of parallel classes (the initial structures). The second
stage consists in determining all extensions of each of these initial structures
into a resolution of a 2-(12, 6, 5c) design.
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The following Theorem of Alltop [1] will play a central role in our search
algorithm.

Theorem 1 A resolvable t-(2k, k, λ) design with t even is a resolvable t+
1-(2k, k, λ′) design with λ′ = λ(k − t)/(2k − t) and vice versa.

In our search for resolutions of BIBDs, we use intersection patterns
between parallel classes as well as Theorem 1 in order to produce initial
structures, which guide the search. Using Theorem 1, we find relationships
between pairs and triples of points of the design. These relationships are
used to effectively prune the search tree. Our isomorph rejection is based
on the graph canonical labeling software Nauty [12].

In Section 2 we prove some results that restrict the structure of any
resolution of a 2-(12, 6, 5c) design. Section 3 describes the backtracking
algorithm over parallel classes to construct initial structures for the search
of all resolutions of such designs. Section 4 outlines the backtrack search to
extend an initial structure into resolutions of a 2-(12, 6, 5c) design. In Sec-
tion 5 we describe a new idea to prune the search tree based on relationships
between pairs and triples of points of the design. The computations showed
that there are 58, 619, 818, 970 nonsimple, and at least 30, 885, 758, 702 sim-
ple nonisomorphic resolvable 2-(12, 6, 15) designs. Finally, in order to gain
confidence in the correctness of the classification, we perform a consistency
check based on double counting.

2 Preliminaries

In this section we give some results that restrict the structure of the reso-
lutions of a 2-(12, 6, 5c) design. For these resolutions b = 22c, r = 11c and,
by Theorem 1, each triple of points of the design occurs 2c times.

Let Rx = {Dx,1, Dx,2} and Ry = {Dy,1, Dy,2} be two parallel classes in
a resolution of a 2-(12, 6, 5c) design. Define their parallel class intersection
matrix (PCIM) as the 2×2 matrixM(x, y) = (mij(x, y)), wheremij(x, y) =
|Dx,i∩Dy,j | (see, for example, [4, 9, 10]). Since each point belongs to exactly
one block of a parallel class, the column and row sums in any PCIM is 6.
Then, up to permutation of rows and columns, for resolvable 2-(12, 6, 5c)
designs the only possible PCIMs are

T1 =

(
6 0
0 6

)
, T2 =

(
5 1
1 5

)
, T3 =

(
4 2
2 4

)
, T4 =

(
3 3
3 3

)
.

For any parallel classRx in a resolutionR of a 2-(12, 6, 5c) design, we denote
by ni the number of parallel classes Ry in R such that the PCIM M(x, y)
is Ti, for i = 1, . . . , 4. Since R has 11c parallel classes, for the parallel class
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Rx, there are 11c − 1 PCIMs with respect to the other parallel classes. It
follows by counting pairs of points occurring in a block of Rx that

n1 + n2 + n3 + n4 = 11c− 1

15n1 + 10n2 + 7n3 + 6n4 = (5c− 1)

(
6

2

)
.

(2)

Any solution in nonnegative integers (n1, n2, n3, n4) of system (2) is called
an intersection pattern of Rx in R. The set of all possible nonnegative
integer solutions of (2) is denoted by S(c). Solving the equation system
we get |S(1)| = 1, |S(2)| = 4 and |S(3)| = 9. The sets S(2) and S(3) are
shown in Table 1.

Table 1: Possible intersection patterns of any parallel class in a resolution.
(a) For 2-(12, 6, 10) designs; (b) for 2-(12, 6, 15) designs.

(a)
n1 n2 n3 n4

1 1 0 0 20
2 0 2 1 18
3 0 1 5 15
4 0 0 9 12

(b)
n1 n2 n3 n4

1 2 0 0 30
2 1 2 1 28
3 1 1 5 25
4 1 0 9 22
5 0 4 2 26
6 0 3 6 23
7 0 2 10 20
8 0 1 14 17
9 0 0 18 14

Now the set S(c) is used to divide the set of resolutions of a 2-(12, 6, 5c)
design into |S(c)| nonisomorphic classes. For this purpose we impose a total
ordering on S(c). Although any ordering can be used, we preferred to use
the reverse lexicographic ordering (see Table 1). Clearly (c − 1, 0, 0, 10c)
and (0, 0, 9c − 9, 2c + 8) are respectively the first and the last elements of
S(c) for any c ≥ 1. A parallel class in a resolution R is called of type s
if its intersection pattern in R is the sth element of S(c). A resolution R
is called of type s if it has at least one parallel class of type s, but it has
no parallel class of type i < s. Note that two resolutions of different types
cannot be isomorphic.

Let R be a resolution of a 2-(12, 6, 5c) design. For any parallel class Rx

in R, we define

F (Rx) = {Ry ∈ R |M(x, y) 6= T4}.
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If Rx is a parallel class of type s in a resolution R of type s, then the
collection of parallel classes F (Rx) is called an initial structure of type s of
R.

Lemma 2 Let Rx =(Bx1, Bx2) be a parallel class of a resolvable 2-(12, 6, 5c)
design. Let T be a 3-subset of Bxj for either j = 1 or j = 2, and T c =
Bxj − T . Then both T and T c have the same number of occurrences in
F (Rx).

Proof. Let Ry ∈ R−F (Rx). Thus M(x, y) = T4. It follows that T occurs
in one of the blocks of Ry if and only if T c occurs in the other block of Ry.
Then, T and T c occur the same number of times in R−F (Rx). Also, from
Theorem 1, both T and T c occur 2c times in the design. Therefore, both
T and T c occur the same number of times in F (Rx). ut

3 Initial structures

In this section we describe the backtracking over parallel classes used for
constructing all nonisomorphic initial structures of all resolutions of a
2-(12, 6, 5c) design.

We fix some notation: Let X = {0, . . . , 5} and Y = {6, . . . , 11}. Put
V = X ∪ Y . Let C be the set of all pairs (C1, C2) such that {C1, C2} is a
partition of V with |C1| = |C2| = 6. For each partition {A,B} of X, with
A = {x1, x2, x3} and B = {x4, x5, x6}, define the set

P(A,B) = {(A ∪ {y1, y2, y3}, B ∪ {y3, y4, y6}) ∈ C |
{{y1, y2, y3}, {y3, y4, y6}} is a partition of Y }.

It follows that |P(A,B)| =
(
6
3

)
.

Let R = (R1, · · · , Rr) be a resolution of type s of a 2-(12, 6, 5c) design.
Suppose that R1 is a parallel class of type s in R. Let (n1, n2, n3, n4) be
the intersection pattern of the parallel class R1. Without loss of generality
we can assume that Ri = (X,Y ), for i = 1, . . . , n1 + 1. Also, without
loss of generality we may assume that Rn1+2 = (Z, V − Z), where Z =
{0, 1, 2, 3, 4, 6} if n2 > 0, or Z = {0, 1, 2, 3, 5, 6} if n2 = 0 and n3 > 0. Note
that M(1, n1 +2) = T2 if n2 > 0 or M(1, n1 +2) = T3 if n2 = 0 and n3 > 0.

In order to generate all possible initial structures for the resolutions of
type s of a 2-(12, 6, 5c) design, we use a backtracking algorithm over parallel
classes. The tuple (R1, . . . , Rn2+2) is taken as the initial solution for the
backtrack. The parallel class Ri will be chosen in

C1 = {Rz ∈ C |M(1, z) = T2} for i = n1 + 3, . . . , n1 + n2 + 1
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and

C2 = {Rz ∈ C |M(1, z) = T3} for i = n1 + n2 + 2, . . . , n1 + n2 + n3 + 1.

Clearly, |C1| =
(
6
5

)(
6
1

)
= 36 and |C2| =

(
6
4

)(
6
2

)
= 225. For each choice

of these parallel classes, we check that each partial solution could lead
simultaneously to a resolution of type s of a 2-(12, 6, 5c) design and of a
3-(12, 6, 2c) design. We perform isomorph rejection only at the end of the
search and at the level given by the parallel class n1 + n2 + 1. Also, at
the end of the search, we check that the designs found are consistent with
Lemma 2 with respect to the parallel class R1 = (X,Y ). In both levels,
we use the full automorphism group. A computation search shows the
following result.

Theorem 3 Let R be a resolution of type s for a 2-(12, 6, 15) design. Then
the number of nonisomorphic initial structures of type s for R is equal to
zero for s = 2, 5, and there exist respectively 1, 9, 21987 and 793 initial
structures for s = 1, 3, 4 and 6. While for a 2-(12, 6, 10) design, the
number of nonisomorphic initial structures of type s is equal to zero for
s = 2, and there are respectively 1, 6 and 1581 initial structures for s = 1,
3 and 4.

The CPU time to generate the initial structures of the above Theorem
was approximately 2 and 14 days for c = 2 and c = 3, respectively. However
for c = 3, our computer program was not able to generate all such designs
in a reasonable time, for s = 7, 8, 9. For example, for s = 7, the program
does not finish even after 34 days. During this running time the program
generated more than twenty million initial structures. Preliminary compu-
tational experiments show that for s = 8 and s = 9 the CPU time and the
number of possible initial structures seem to grow even more. Additional
computational experiments with some initial structures show that it is not
feasible to enumerate all simple resolutions with the existing computational
resources.

Sometimes, sets will be denoted without brackets and commas, thus,
for example, the set {x, y, z} will be denoted simply by xyz.

Let F be any initial structure of type s of a resolution of a 2-(12, 6, 5c)
design constructed by our backtracking. Denote by `(W ) the number of
occurrences of a subset W of X in the design F . We define

I(F) = F ∪ ((012, 345), . . . , (012, 345)︸ ︷︷ ︸
2c−`(012)

, . . . , (045, 123), . . . , (045, 123)︸ ︷︷ ︸
2c−`(045)

). (3)

Note that each 3-subset of X occurs in I(F) 2c times. (Abusing the nota-
tion, each pair of triples of elements of X also will be called parallel class).
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For the structure I(F) we define a vector (p1, p2, p3) where

p1 = |F|+ 2c− `(012), p2 = p1 + 3c− `(01) + `(012),

p3 = p2 + 3c− `(02) + `(012).
(4)

This vector will be used in the following section. Note that the first p1, p2,
and p3 parallel classes of I(F) contain all the occurrences of the sets 012,
01, and 02, required in a resolvable 2-(12, 6, 5c) design, respectively.

For example, up to isomorphism, the only structure I(F) of type s,
where s is the minimal element of S(c), for a 2-(12, 6, 5c) design has the
form:

(c) ({0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11})
(c) ({0, 1, 2}, {3, 4, 5})
(c) ({0, 1, 3}, {2, 4, 5})
(c) ({0, 1, 4}, {2, 3, 5})
(c) ({0, 1, 5}, {2, 3, 4})
(c) ({0, 2, 3}, {1, 4, 5})
(c) ({0, 2, 4}, {1, 3, 5})
(c) ({0, 2, 5}, {1, 3, 4})
(c) ({0, 3, 4}, {1, 2, 5})
(c) ({0, 3, 5}, {1, 2, 4})
(c) ({0, 4, 5}, {1, 2, 3})

Here, the (c) in the first column means that the pair (A, B) appears c
times. For this example, p1 = 2c, p2 = 5c, and p3 = 8c.

4 Extending Initial Structures

This section outlines the backtrack algorithm over parallel classes with
partial isomorph rejection used for determining all extensions of the initial
structures for a 2-(12, 6, 5c) design.

In the previous section we divided the classification of resolutions of a
2-(12, 6, 5c) design into subproblems of type 1, 2, . . ., and |S(c)|. We now
divide the classification problem of resolutions of type s (1 ≤ s ≤ |S(c)|) of
a 2-(12, 6, 5c) design into smaller problems. Let ms denote the number of
nonisomorphic initial structures of type s of a 2-(12, 6, 5c) design. We label
these initial structures as F1, . . . ,Fms . Thus we say that a resolution R of
a 2-(12, 6, 5c) design of type s has subtype j (1 ≤ j ≤ ms), ifR has at least a
subcollection of parallel classes isomorphic to Fj , but has no subcollection
of parallel classes isomorphic to an initial structure F` with ` < j. It is
easy to see that two resolutions of type s of different subtypes cannot be
isomorphic. This proves that the classification of every resolution of type s
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and subtype 1 ≤ j ≤ ms implies the classification of all resolutions of type
s.

Now we describe the backtrack algorithm over parallel classes used for
determining all extensions of the initial structure Fj (1 ≤ j ≤ ms) of type
s to resolutions of type s and subtype j of a 2-(12, 6, 5c) design. This
structure is used as the initial solution for the backtrack search. Assume
that (R1, . . . , Ri−1) is a partial solution. Then the ith parallel class will be
chosen in the set P(Ai, Bi), where (Ai, Bi) is the ith element of I(Fj) (see
(3)). For each choice of these parallel classes, we check that each partial
solution could lead simultaneously to a resolution of type s and subtype j
of a 2-(12, 6, 5c) design and of a 3-(12, 6, 2c) design.

A partial isomorph rejection scheme [13] is employed to avoid process-
ing isomorphic subproblems in the backtrack tree. Such isomorph rejection
is most useful if it can be applied to intermediate levels of the search tree.
We perform isomorph rejection only at the top and at selected intermediate
levels. These levels are called testing levels. For the initial structure Fj of
type s, the intermediate testing levels are given by the vector (p1, p2, p3),
see (4). A partial isomorph rejection at the intermediate level pi consists
in generating the set A(pi) of all the partial solutions (R1, . . . , Rpi), and
choosing only one partial solution from each isomorphism class of A(pi)
to be extended in the search tree. This partial solution is called a certifi-
cate. For these intermediate levels we use the automorphism group that
leaves invariant the set X. This partial isomorph rejection scheme reduces
substantially the computer time required for generating resolutions a of
2-(12, 6, 5c) design (see [10]). We also perform isomorph rejection at the
end of the search, in this case using the full automorphism group.

In order to determine the certificates in every intermediate testing level
p for the initial structure Fj , we use the package Nauty due to McKay
[12] as follows. When a partial solution Rp = (R1, . . . , Rp) is generated,
we construct the bipartite point-block incidence graph G(Rp) and then call
Nauty to get the canonical form of G(Rp). Hence the design Rp is a certifi-
cate in this testing level if the canonical form of G(Rp) was not generated
before. Note that a certificate, in our context, is a collection (R1, . . . , Rp)
of parallel classes generated by our backtracking algorithm. The isomorph
rejection described here is closely related to that in [10]. However, here
the graph G(Rp) for calculating certificates has 2p vertices, whereas in
[10] at every testing level it is used a bipartite point-block incidence graph
with 2r vertices. This reduces the time needed to calculate certificates at
intermediate testing levels.

Let R = (F , R|F|+1, . . . , Rp) and Q = (F , Q|F|+1, . . . , Qp) be two par-
tial solutions constructed by our backtrack search via an initial structure
F , where p is an intermediate testing level. Let B = {(Ap+1, Bp+1), . . . ,
(Ar, Br)} be the last r − p parallel classes of I(F) (see (3)). Now assume
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that there exists an isomorphism α mapping G(R) to G(Q) that leaves
invariant the set X. ¿From [2, Prop. 9.42], α induces an isomorphism from
R to Q. Since α(X) = X, it follows that α(F) = F . Next we show that
α(B) = B. Let T be a 3-subset occurring in B. By definition of the inter-
mediate testing level p, T does not occur in R − F . This implies that T
and α(T ) occur the same number of times in F . Hence, by (3), T and α(T )
occur the same number of times in B. This implies that α(B) = B. Thus,
the proof of the following lemma is similar to that of [10, Theorem 6].

Lemma 4 Let Fj (1 ≤ j ≤ ms) be an initial structure of type s. Then,
our isomorph rejection algorithm generates, without repetition, all noniso-
morphic resolutions of type s and subtype j of a 2-(12, 6, 5c) design.

Since two resolutions of type s having different subtypes are nonisomor-
phic, Lemma 4 implies the following theorem.

Theorem 5 For any type s ∈ {1, . . . , |S(c)|}, our isomorph rejection algo-
rithm generates, without repetition, all nonisomorphic resolutions of type s
of a 2-(12, 6, 5c) design.

5 Pruning

As in any backtrack search, it is useful to identify when a partial solution
cannot lead to a solution although it is still possible to extend the partial
solution further. Detecting and pruning immediately such partial solutions
can avoid a lot of work compared with the cost of detection. We now
describe how we used Alltop’s Theorem to obtain a new pruning technique
for the enumeration of resolvable (2k, k, λ) designs. It also uses a relation
between 2-subsets and 3-subsets of points of the design.

Let R = (R1, . . . , Rr) be any resolution of a (2k, k, λ) design. For
1 ≤ j ≤ r, let cj(ab) and tj(xyz) be the number of occurrences of ab and
xyz in (R1, . . . , Rj), respectively. Let fj(ab) = λ − cj(ab) and fj(xyz) =
λ′ − tj(xyz), where λ′ = λ(k− 2)/(2k− 2) (see Theorem 1). Moreover, for
each subset S of {x, y, z}, we define

nj(S, ab) = |{R∈(Rj+1, . . . , Rr) :S ∪{a, b} occurs in the parallel class R}|.

We denote by m the number of parallel classes R in (Rj+1, . . . , Rr) such
that the triple {x, y, z} occurs in R but the points a and b occur in differ-
ent blocks of R. By counting the occurrences of the sets {a, b}, {x, y, z},
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{a, b, x}, {a, b, y} and {a, b, z} in (Rj+1, . . . , Rr), we get that

nj(xyz, ab) + nj(xy, ab) + nj(xz, ab) + nj(x, ab) = fj(abx)

nj(xyz, ab) + nj(xy, ab) + nj(yz, ab) + nj(y, ab) = fj(aby)

nj(xyz, ab) + nj(xz, ab) + nj(yz, ab) + nj(z, ab) = fj(abz) (5)

nj(xyz, ab) + nj(∅, ab) +m = fj(xyz)∑
S⊂{x,y,z}

nj(S, ab) = fj(ab)

and
m ≤ r − j − fj(ab). (6)

This Diophantine linear system is used to prune the search tree as follows.
Clearly in each partial solution (R1, . . . , Rj) with j ≤ r we can calculate
fj(abx), fj(aby), fj(abz), fj(xyz) and fj(ab) for any five points a, b, x,
y and z. However, the eight numbers nj(S, ab) (S ⊂ {x, y, z}), and m
are unknown. Thus for any partial solution, we have a Diophantine linear
system with five equations and an inequality. Then any partial solution
(R1, . . . , Rj) could lead to a resolution for a (2k, k, λ) design if for any five
different points a, b, x, y and z, there exists a nonnegative integer solution

(nj(xyz, ab), nj(xy, ab), nj(xz, ab), nj(x, ab), . . . , nj(∅, ab),m)

for the system (5)-(6).
Example. For k = 6 and λ = 15, consider the following partial solution

(R1, . . . , R4):

({0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11})
({0, 1, 2, 3, 4, 6}, {5, 7, 8, 9, 10, 11})
({0, 1, 2, 4, 5, 9}, {3, 6, 7, 8, 10, 11})
({0, 1, 2, 4, 5, 10}, {3, 6, 7, 8, 9, 11}).

In this partial solution, for the five points a = 4, b = 5, x = 0, y = 1 and
z = 2, we have

f4(4, 5) = 12, f4(0, 1, 2) = 2, f4(4, 5, 0) = 3, f4(4, 5, 1) = 3, f4(4, 5, 2) = 3.

However, an exhaustive search shows that there is no nonnegative integer
solution for the linear system (5). Hence this partial solution cannot lead
to a resolution for a 2-(12, 6, 15) design. Thus this node (partial solution)
is pruned in the search tree.

More constraints at each node will result in the search tree containing
fewer nodes, but the overall cost may be higher. To avoid a high cost in the
search, we just check out the constraints given by 0 ≤ fj(abx) ≤ fj(aby) ≤
fj(abz) ≤ 2 and 0 ≤ fj(xyz) ≤ 2. Moreover, since the solutions of system
(5) do not depend on j, they are calculated once at the beginning of the
computation search.
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6 Results

The backtracking algorithms described in this work were implemented in
the C language. Tables 2 and 3 present respectively the number of all
nonsimple and a subfamily of simple resolutions for 2-(12, 6, 15) designs and
the sizes of their automorphism groups. Table 4 presents the number of
all resolutions for 2-(12, 6, 10) designs and the sizes of their automorphism
groups.

For resolvable 2-(12, 6, 15) designs, the program for extending the initial
structures ran for approximately 2.1 years on a network of 8 PCs with
a total of 22 Opteron processors running at 2 GHz; while for resolvable
2-(12, 6, 10) designs, the execution time was about 3 minutes.

Since any resolution of a 2-(12, 6, 15) design is nonsimple if and only if
it is of type either 1, 3, or 4, Table 2(a)-(c) proves the next Theorem.

Theorem 6 There are 58, 619, 820, 853 nonisomorphic nonsimple resolv-
able 2-(12, 6, 15) designs.

Table 3 shows the following result.

Theorem 7 There are at least 30, 885, 758, 702 nonisomorphic simple re-
solvable 2-(12, 6, 15) designs.

Table 4 shows the next result.

Theorem 8 There are 545 nonisomorphic resolvable 2-(12, 6, 10) designs.

Also our algorithm confirms that there exists one nonisomorphic resolv-
able 2-(12, 6, 5) design. The size of its automorphism group is 7920.

Table 2: Classification of nonsimple resolvable 2-(12, 6, 15) designs

(a) Resolutions of type 1
|Aut(D)| 1 2 3 4 5 6 8 9 10 12
Nr 21112878 39456 684 822 29 147 59 6 6 25

16 18 20 24 36 48 60 72 120 216 432 720 7920
8 6 2 11 3 1 1 1 1 1 1 1 1 21154150

Total
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Table 2 (continued)

(b) Resolutions of type 3
|Aut(D)| 1 2 3 4 5 6 8 10 12
Nr 2398771058 326090 84 1477 88 10 21 9 1

20 55
4 1 2399098843

Total

(c) Resolutions of type 4
|Aut(D)| 1 2 3 4 6 8 9 12
Nr 56197075420 2475135 5945 10609 237 415 3 43

16 18 24 27 36 48 54 144 432
25 6 13 1 1 3 2 1 1 56199567860

Total

Table 3: The resolvable simple 2-(12, 6, 15) designs of type 6

|Aut(D)| 1 2 3 4 6 8 12
Nr 30885043846 712554 1040 1195 41 23 3 30885758702

Total

7 Consistency checking

Validation of the results is very important and essential in any computer-
aided classification, see [6] for a survey of validations methods. Among
these methods, consistency checking ([8]) has been used successfully in
some recent classification studies [5], [7].

We perform a consistency check based on double counting. On the
one hand, we rely on the classified resolvable 2-(12, 6, 10) designs. On the
other hand, we rely on data obtained in the extension stage. Since our
classification of resolvable 2-(12, 6, 5c) designs is based on the classification
of resolutions of type s (1 ≤ s ≤ |S(c)|), it is sufficient to perform a
consistency checking on each classification of resolutions of type s, for s =
1, . . . , |S(c)|.

Let Ns,g be the number of nonisomorphic resolutions of type s whose
automorphism group has order g. Then, by the orbit-stabilizer theorem,
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Table 4: Classification of nonsimple resolvable 2-(12, 6, 10) designs

(a) Resolutions of type 1
|Aut(D)| 1 2 3 4 6 8 10 12 16 18 24 32 36
Nr 15 36 1 21 7 5 4 5 9 2 2 4 2

48 240 1440 7920
2 1 2 1 119

Total

(b) Resolutions of type 3
|Aut(D)| 1 2 3 4 6 8 10 16 40 110 240
Nr 198 141 3 25 2 12 3 5 1 1 1 392

Total

(c) Resolutions of type 4
|Aut(D)| 1 2 4 6 8 11 12 24
Nr 9 15 3 2 1 1 1 2 34

Total

the total number of resolutions of type s of a 2-(12, 6, 5c) design is∑
g≥1

12!Ns,g

g
.

For the extension stage the counting is done as follows. Let the initial
structures be Fj , 1 ≤ j ≤ ms, of type s of a 2-(12, 6, 5c) design. Let
E(Fj , h) be the set of all resolutions R that would be generated by the
backtrack algorithm without isomorph rejection as extensions of Fj such
that R has h subcollections of parallel classes isomorphic to Fj . Since Fj

itself belongs to R, it follows that h ≥ 1. Let Mj,h = |E(Fj , h)|. Next,
we will explain how to calculate this number during the backtrack search
with isomorph rejection. Since any two resolutions of type s of different
subtypes are not isomorphic, it follows from the orbit-stabilizer theorem
that the total number of resolutions of type s of a 2-(12, 6, 5c) design is∑

h≥1

1

h

ms∑
j=1

12!Mj,h

|Aut(Fj)|
,

where the division by h is required because the inner sum counts every
resolution once for each of the h subcollections of parallel classes isomorphic
to Fj that occur in a resolution.
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Both counts give the same results for each classification of resolutions
of type s, for s = 1, . . . , |S(c)|, for c = 2 and c = 3. This gives us confidence
that the classifications are correct.

Now, we explain how to calculate the number Mj,h during the backtrack
search with isomorph rejection. At each testing level p, together with a
certificate Rp, we store the number, M(Rp), of all partial solutions that
would be generated by the backtrack algorithm without isomorph rejection
that are isomorphic to Rp. Clearly, for the testing level p1, M(Rp1

) is
equal to the size of the isomorphism class of Rp1

. Suppose that i > 1. For
each partial solution Qpi

generated from a certificate Qpi−1
, let N(Qpi

) =
M(Qpi−1

). Then, it is not hard to see that, for every certificate Rpi

M(Rpi
) =

∑
Qpi

is isomorphic to Rpi

N(Qpi
).

In consequence, if C(h) is equal to the set of all certificates at the top level
having h subcollections of parallel classes isomorphic to Fj , then

Mj,h =
∑
R∈C(h)

M(R).

References

[1] W.O. Alltop, Extending t-designs, J. Combin. Theory Ser. A 18
(1975), 177–186.
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